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Fanconi anemia (FA) is an autosomal recessive disorder with diverse clinical symptoms and extensive genetic
heterogeneity. Of eight FA genes that have been implicated on the basis of complementation studies, four have been
identified and two have been mapped to different loci; the status of the genes supposed to be defective in groups
B and H is uncertain. Here we present evidence indicating that the patient who has been the sole representative
of the eighth complementation group (FA-H) in fact belongs to group FA-A. Previous exclusion from group A was
apparently based on phenotypic reversion to wild-type rather than on genuine complementation in fusion hybrids.
To avoid the pitfall of reversion, future assignment of patients with FA to new complementation groups should
conform with more-stringent criteria. A new group should be based on at least two patients with FA whose cell
lines are excluded from all known groups and that fail to complement each other in fusion hybrids, or, if only one
such cell line were available, on a new complementing gene that carries pathogenic mutations in this cell line. On
the basis of these criteria, the current number of complementation groups in FA is seven.

Fanconi anemia (FA) is an autosomal recessive chro-
mosomal breakage disorder with diverse clinical symp-
toms including progressive bone marrow failure and
increased cancer risk (Auerbach et al. 1998 [MIM
227650]). Cells from patients with FA are hypersensitive
to cross-linking agents, such as diepoxybutane and mi-
tomycin C (MMC); this hypersensitivity has been ex-
ploited to assess genetic heterogeneity through comple-
mentation analysis. Eight complementation groups have
been reported (Joenje et al. 1997), each of which is
thought to be related to a distinct FA gene. Four FA
genes—FANCA (Fanconi Anaemia/Breast Cancer Con-
sortium 1996; Lo Ten Foe et al. 1996), FANCC (Strath-
dee et al. 1992), FANCF (de Winter et al. 2000), and
FANCG/XRCC9 (de Winter et al. 1998)—have been
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identified thus far, whereas genetic map locations have
been determined for FANCD (Whitney et al. 1995) and
FANCE (Waisfisz et al. 1999c). Attempts to clone or
map the genes for the remaining groups—B and
H—have thus far failed.

Complementation group H is unique because it is rep-
resented by a single cell line, EUFA173. This cell line was
defined as “H,” because of its capacity to complement
the cross-linker hypersensitivity of all other groups in fu-
sion hybrids; in addition, EUFA173 cells failed to be com-
plemented by transfection with expression plasmids con-
taining cDNAs for FANCA or FANCC (Joenje et al.
1997). We were recently led to re-examine this assign-
ment, because two of us (A.D. and I.G.-H.) found evi-
dence for correction of its MMC sensitivity after trans-
duction with a retroviral vector containing the FANCA
cDNA, suggesting that EUFA173 might in fact be FA-A
(fig. 1). We subsequently screened the FANCA gene for
mutations and found this cell line to be a compound het-
erozygote for two novel mutations: a missense mutation
in exon 29 (2852GrA; Arg951Gln) and a mutation that
removes exons 17–31 from the open reading frame
(E17–31del) (Fanconi Anemia Mutation Database; Gen-
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Figure 1 Correction of MMC hypersensitivity of EUFA173 cells
after retroviral transduction of FANCA cDNA. EUFA173 lympho-
blasts were infected with retroviral supernatants carrying either the
FANCA cDNA or the empty vector pMMP, essentially according to
the study by Pulsipher et al. (1998). After puromycin selection, cells
were tested for growth inhibition by MMC. A normal lymphoblastoid
cell line (PD7) and the uninfected EUFA173 cells were also included
in the assay. Results shown are representative of multiple independent
MMC survival assays performed with cells from three separate retro-
viral infections.

Table 1

MMC Sensitivity of EUFA173#HSC72OT Fusion
Hybrids

Fusion
No.

IC50
a

(nM) Result

1 2.5 A
2 20 non-A
3 35 non-A
4 38 non-A
5 45 non-A

NOTE.—HSC72OT cells are the reference group A
cells HSC72, marked with ouabain resistance (“O”)
and thioguanine resistance (“T”; this marker provides
sensitivity to medium containing hypoxanthine, ami-
nopterine, and thymidine [HAT], because of a muta-
tion in HPRT) (Duckworth-Rysiecki et al. 1985).

a IC50 values 110 nM indicate a complemented phe-
notype (Joenje et al. 1995).

Bank). The latter mutation may be assumed, on the basis
of its severity, to be pathogenic. The missense mutation
changes an amino acid residue that is conserved in the
mouse (Van de Vrugt et al. 2000), whereas this alteration
was not detected in 96 control chromosomes. In addition,
sequencing of the entire FANCA open reading frame did
not reveal any further alterations. Moreover, western blot-
ting experiments had previously shown the presence of a
full-length FANCA protein in extracts from EUFA173
cells (Waisfisz et al. 1999a), which essentially excludes
splice-site mutations as well as promoter-inactivating mu-
tations. Therefore, the Arg951Gln mutation is most prob-
ably pathogenic. Altogether, these results indicate that
EUFA173 should indeed be reassigned to complementa-
tion group A. Consequently, the current number of FA
complementation groups should be corrected from eight
to seven. Reports describing certain cellular features as
specific for FA group H should be reinterpreted accord-
ingly (Yamashita et al. 1998; Carreau et al. 1999; Garcia-
Higuera et al. 1999; Waisfisz et al. 1999a).

To explain the discrepancy between the results obtained
with retroviral transduction and our earlier results, we
scrutinized the original cell-fusion and transfection data
that indicated EUFA173 cells to be classified as non-A.
Five independent fusions between EUFA173 and the ref-
erence group A cell line HSC72OT had been evaluated
for MMC-induced growth inhibition (table 1). Only one
of the hybrids was not complemented (indicating identity
with the FA-A fusion partner), whereas four hybrids were
complemented (indicating nonidentity with group A). On
the basis of this result, in combination with the apparent

lack of complementation by FANCA cDNA (discussed
below), we concluded that EUFA173 was non-A. In ret-
rospect, the single sensitive hybrid was apparently more
meaningful than the four resistant hybrids. Given the new
transduction results, resistance in those hybrids presum-
ably had resulted from phenotypic reversion rather than
from genuine complementation. Reversion in the four re-
sistant hybrids might have occurred through the gener-
ation of a wild-type FANCA allele resulting from intra-
genic recombination or gene conversion (see Lo Ten Foe
et al. 1997) or through a sequence alteration, in cis, af-
fecting the missense mutation in EUFA173 (see Waisfisz
et al. 1999b). The reference group A cell line HSC72OT
is homozygous for a deletion of exons 18–28 (results not
shown), which does not overlap with the Arg951Gln mis-
sense mutation in EUFA173, making homologous recom-
bination between these two mutations theoretically pos-
sible (fig. 2). We tested this hypothesis by amplifying a
fragment from cDNA isolated from the reverted hybrid
cells, using one primer specific for a region in the over-
lapping deletions and the other downstream of the mis-
sense mutation (fig. 2). In the case of mitotic recombi-
nation or gene conversion, the missense mutation was
predicted to be absent from this fragment. However, se-
quencing showed the mutation still to be present, implying
that mitotic recombination could not explain the rever-
sion. In addition, no other sequence alterations were
noted in the amplified fragment, indicating that there were
no nearby in cis alterations that could functionally com-
pensate for the missense mutation (Waisfisz et al. 1999b).
To check whether the MMC-resistant phenotype was
caused by a defect in the bioactivation of MMC, we used
cisplatin, a cross-linking agent that does not depend on
cellular metabolism, to assess growth inhibition of the
resistant hybrid cells. The results (not shown) showed a
complete cross-resistance to cisplatin—that is, equal to
the sensitivity of wild-type cells—indicating that the re-
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Figure 2 Four FANCA alleles in the fusion hybrid from EUFA173
and HSC72OT cells, with the mutations indicated (2852GrA
[Arg951Gln] and E17–31del in EUFA173; and E18–28del [homozygous]
in HSC72OT [dotted regions are deletions; drawing is not to scale]).
Either mitotic recombination at the “X” or a gene-conversion event
would predict the generation of a wild-type allele, which would explain
the reverted phenotype of the hybrid cells. PCR primers were chosen as
indicated by the arrows, allowing specific amplification of a 200-bp
fragment (nucleotides 2748–2947) predicted to have lost the missense
mutation after recombination.

Figure 3 Loss of complementation in EUFA173 cells, as a func-
tion of time after transfection with FANCA cDNA. Cells were trans-
fected with the episomal vector pDR2 containing the FANCA cDNA
(Kruyt et al. 1996) and were grown in the continued presence of
hygromycin (200 mg/ml), to select for plasmid-containing cells. Growth
inhibition by MMC was tested at 2, 4, and 6 wk after transfection,
as indicated.

version was not due to a mutation affecting the MMC-
bioactivation pathway. We entertain two possibilities that
remain to explain the phenotypic reversion of the fusion
hybrids: first, a secondary in-cis alteration compensating
the Arg951Gln mutation relatively far away from the pri-
mary missense mutation—that is, outside the amplified
fragment described in figure 2; and, second, a mutation,
in a modifier gene, that compensates for the FA defect in
trans. We are currently trying to address these possibilities.

We have previously found lack of complementation in
EUFA173 cells by FANCA cDNA in the episomal Epstein-
Barr virus–derived plasmid pDR2 (Joenje et al. 1997). We
have now repeated those experiments and—depending on
the time after transfection—have found different results

(fig. 3). After 2, 4, and 6 wk of growth in the presence
of hygromycin (used to select for cells containing the plas-
mid), the IC50 values dropped from 32 to 24 to 9 nM
MMC, respectively, indicating progressive loss of com-
plementation (IC50 values !10 nM indicate absence of
complementation). This result explains why a similar ex-
periment performed previously failed to show comple-
mentation. Meanwhile, we have obtained evidence for
growth inhibition resulting from overexpression of
FANCA in combination with hygromycin selection (F. A.
E. Kruyt and H. Joenje, unpublished data), which might
explain progressive loss of complementation in a trans-
fected culture: if, in a minority of cells, FANCA expression
were to be uncoupled from the hygromycin resistance
(e.g., by intraepisomal recombination or by integration
of the resistance marker into the genomic DNA), contin-
ued selection with hygromycin would give FANCA-non-
expressing cells a proliferative advantage over FANCA-
expressing cells, finally resulting in elimination of
complemented cells from the cell population. In retroviral
transduction experiments with high virus titers, gene-
transfer efficiencies are typically much higher than those
obtained with direct transfection of DNA. After high-titer
viral transduction, selection is therefore hardly necessary,
so that loss of complementation is not expected to pose
a serious problem. Hence, retroviral transduction appears
to be a preferred method to classify patients with FA by
gene-mediated functional complementation (see Pulsipher
et al. 1998). However, cell-fusion experiments will con-
tinue to serve as a generally reliable method to assign cell
lines to groups for which the gene has not been identified.
In spite of the overall success obtained with this approach,
the present findings illustrate that, occasionally, “com-
plemented” fusion hybrids may result from reversion to
MMC resistance rather than from phenotypic correction
by complementation. To avoid future misassignments of
cell lines from patients with FA to new complementation
groups, more-stringent criteria should be adopted—that
is, identification of at least two patients whose cell lines
have been excluded from all known groups and that fail
to complement each other in fusion hybrids. However,
ultimate proof for the correct assignment of a patient with
FA to a new complementation group will require both
identification of a complementing gene for that group and
demonstration of pathogenic mutations in this gene.
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